Optimal Nonlinear Readout under Strong Non-Gaussian Noise

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Bayesian Estimation of BOLD Signal under Non-Gaussian Noise

Modeling the blood oxygenation level dependent (BOLD) signal has been a subject of study for over a decade in the neuroimaging community. Inspired from fluid dynamics, the hemodynamic model provides a plausible yet convincing interpretation of the BOLD signal by amalgamating effects of dynamic physiological changes in blood oxygenation, cerebral blood flow and volume. The nonautonomous, nonline...

متن کامل

Nonlinear Filtering of Non-Gaussian Noise

This paper introduces a new nonlinear filter for a discrete time, linear system which is observed in additive non-Gaussian measurement noise. The new filter is recursive, computationally efficient and has significantly improved performance over other linear and nonlinear schemes. The problem of narrowband interference suppression in additive noise is considered as an important example of non-Ga...

متن کامل

Relation between optimal nonlinearity and non-Gaussian noise: enhancing a weak signal in a nonlinear system.

In the study of stochastic resonance, it is often mentioned that nonlinearity can enhance a weak signal embedded in noise. In order to give a systematic proof of the signal enhancement in nonlinear systems, we derive an optimal nonlinearity that maximizes a signal-to-noise ratio (SNR). The obtained optimal nonlinearity yields the maximum unbiased signal estimation performance, which is known in...

متن کامل

Nonlinear and Non-gaussian State Estimation: a Quasi-optimal Estimator

The rejection sampling filter and smoother, proposed by Tanizaki (1996, 1999), Tanizaki and Mariano (1998) and Hürzeler and Künsch (1998), take a lot of time computationally. The Markov chain Monte Carlo smoother, developed by Carlin, Polson and Stoffer (1992), Carter and Kohn (1994, 1996) and Geweke and Tanizaki (1999a, 1999b), does not show a good performance depending on nonlinearity and non...

متن کامل

Risk Sensitive, Nonlinear Optimal Control: Iterative Linear Exponential-Quadratic Optimal Control with Gaussian Noise

In this contribution, we derive ILEG, an iterative algorithm to find risk sensitive solutions to nonlinear, stochastic optimal control problems. The algorithm is based on a linear quadratic approximation of an exponential risk sensitive nonlinear control problem. ILEG allows to find risk sensitive policies and thus generalizes previous algorithms to solve nonlinear optimal control based on iter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Interdisciplinary Information Sciences

سال: 2013

ISSN: 1340-9050,1347-6157

DOI: 10.4036/iis.2013.23